Electronic Component
Zero Orientation
For CAD Library Construction
CONTENTS

1 INTRODUCTION
 1.1 Scope ...1
 1.2 Purpose ...1

2 CHIP COMPONENTS
 2.1 Chip Capacitor ..3
 2.2 Chip Resistor ..3
 2.3 Chip Inductor ..3

3 MOLDED COMPONENTS
 3.1 Molded Capacitors ...4
 3.2 Molded Diodes ..4
 3.3 Molded Inductors ...4

4 PRECISION WIRE-WOUND
 4.1 Precision Wire Wound Components ...5

5 MELF COMPONENTS
 5.1 MELF Diodes ...6
 5.2 MELF Resistors ...6

6 ALUMINUM ELECTROLYTIC CAPACITORS
 6.1 Aluminum Electrolytic Capacitors ..7

7 SOT COMPONENTS
 7.1 SOT23-3 ..8
 7.2 SOT23-5 ..8
 7.3 SOT343 ...8
 7.4 SOT223 ...8

8 TO COMPONENTS
 8.1 TO252 (DPAK) ..9

9 SMALL OUTLINE GULLWING COMPONENT
 9.1 SOIC, SOP & SSOP ...10
 9.2 TSSOP ...10

10 SMALL OUTLINE J-LEAD COMPONENTS
 10.1 SOIC J-Lead ..11

11 QUAD FLAT PACKAGE
 11.1 Square QFP Pin 1 on Side ..12
 11.2 Rectangle QFP Pin 1 on Side ...12

12 BUMPER QUAD FLAT PACKAGE
 12.1 Bump QFP Pin 1 on Side ..13
 12.2 Bump QFP Pin 1 in Center ...13

13 CERAMIC FLAT PACKAGE
 13.1 Ceramic Flat Package ...14

14 CERAMIC QUAD FLAT PACKAGE
 14.1 CQFP (Ceramic Quad Flat Package) ..15
15 PLASTIC LEADED CHIP CARRIERS ... 16
 15.1 PLCC Square .. 16
 15.2 PLCC Rectangular .. 16
16 LEADLESS CHIP CARRIERS .. 17
 16.1 LCC Square ... 17
 16.2 Chip Array .. 17
17 QUAD FLAT NO-LEAD .. 18
 17.1 QFN Square .. 18
 17.2 QFN Rectangular Vertical ... 18
 17.3 QFN Rectangular Horizontal ... 18
18 BALL GRID ARRAY .. 19
 18.1 BGA Square ... 19
 18.2 BGA Rectangular ... 19
19 COMPONENT ZERO ORIENTATIONS ... 20
 19.1 Summary .. 20
20 APPENDIX A - EIA Survey for Component Orientation 21
 20.1 Purpose .. 21
 20.2 Driving factors .. 21
 20.3 Examples of Possible Conflict .. 22
 20.4 Recommendation ... 24
 20.5 Presentation of Results .. 28
21 APPENDIX B – Internet Search Results ... 29
 21.1 Device Orientation (Catalyst) ... 29
 21.2 Device Orientation (LRC China) ... 29
 21.3 Device Orientation (Diodes, Incorporated) .. 30
 21.4 Device Orientation (Fairchild Semiconductor) .. 31
 21.5 Device Orientation (Linear Technology) .. 31
 21.6 Device Orientation (RF Technologies) ... 34
 21.7 Device Orientation (Microchip Devices) ... 36
 21.8 Device Orientation (ZETEX) .. 40
 21.9 Device Orientation (IDT) .. 41
22 APPENDIX C – Comment Form ... 43
23 CREDITS ... 44
 23.1 Contributions .. 44
INTRODUCTION

1.1 Scope
To establish a consistent technique for the description of electronic component orientation, and their land pattern geometries, that facilitates and encourages a common data capture and transfer methodology amongst and between global trading partners.

1.2 Purpose
IPC, in conjunction with the International Electrotechnical Commission (IEC), have established several standards that are in the process of being coordinated. One of the standards is on the design of land patterns geometries (IPC-7351/IEC 61188-5-1); the other set is on electronic description for data transfer between design and manufacturing (IPC-2581/IEC 61182-2). In order to maintain a consistent method where these two important standards describe the component mechanical outlines, and their respective mounting platforms, a single concept must be developed that takes into account various factors within the global community.

One of these factors is that of establishing a CAD component description and land pattern standard that adopts a fixed Zero Component Orientation so that all CAD images are built with the same rotation for the purpose of assembly machine automation.

The land pattern standards clearly define all the properties necessary for standardization and acceptability of a “One World CAD Library”. The main objective in defining a one world CAD library is to achieve the highest level of “Electronic Product Development Automation”. This encompasses all the processes involved from engineering to PCB layout to fabrication, assembly and test. The data format standards need this type of consistency in order to meet the efficiency that electronic data transfer can bring to the industry.

Many large firms have spent millions of dollars creating and implementing their own unique standards for their own “Electronic Product Development Automation”. These standards are proprietary to each firm and are not openly shared with the rest of the industry. This has resulted in massive duplication of effort costing the industry millions of man hours in waste and creating industry chaos and global non-standardization.

The industry associations responsible for component descriptions and tape and reel orientation have tried valiantly to influence the industry by making good standards that describe the component outlines and how they should be positioned in the delivery system to the equipment on the manufacturing floor (Appendix A). Suppliers of parts have either not adhered to the recommendations or have misunderstood the intent and provided their products in different orientations. (Appendix B).

The Land pattern standards (both IPC-7351 and IEC 61188-5-1) put an end to the “Proprietary Intellectual Property” and introduce a world standard so every electronics firm can benefit from Electronic Product Development Automation. The data format standards (IPC-2581 and IEC 61182-2) are an open database XML software code that is neutral to all the various CAD ASCII formats. For true machine automation to exist, the world desperately needs a neutral CAD database format that all PCB manufacturing machines can read.

The main purpose of creating the land pattern standards is to achieve reliable solder joint formation platforms; the reason for developing the data transfer structure is to improve the efficiency with which engineering intelligence is converted to manufacturing reality. Even if the neutral CAD format can drive all the manufacturing machines, it would be meaningless unless the component description standard for CAD land patterns was implemented with some consistency. Zero Component Orientation has a key role in machine automation.
The obvious choice for global standardization for EE hardware engineering, PCB design layout, manufacturing, assembly and testing processes is to incorporate the standard land pattern conventions. Any other option continues the confusion and additional manual hours of intervention in order to achieve the goals of automation. In addition, the ease of having one system export a file so that another system can accomplish the work may require unnecessary manipulation of the neutral format in order to meet the object of clear, unambiguous software code.

The design of any assembly will continue to permit arrangement and orientation of components at any orientation consistent with design standards. Starting from a commonly understood data capture concept will benefit the entire supply chain.
2 CHIP COMPONENTS

2.1 Chip Capacitor

Pin 1 on Left Side

2.2 Chip Resistor

Pin 1 on Left Side

2.3 Chip Inductor

Pin 1 on Left Side

Note: Pin 1 is always the “Positive” pin
3 MOLDED COMPONENTS

3.1 Molded Capacitors

Pin 1 on Left Side

Component

Land Pattern

3.2 Molded Diodes

Pin 1 on Left Side (Cathode)

Component

Land Pattern

3.3 Molded Inductors

Pin 1 on Left Side

Component

Land Pattern

Note: Pin 1 is always the “Positive” pin
4 PRECISION WIRE-WOUND

4.1 Precision Wire Wound Components

Note: Pin 1 is always the “Positive” pin.
5 MELF COMPONENTS

5.1 MELF Diodes

Pin 1 on Left Side (Cathode)

Component

Land Pattern

Note: Pin 1 is always the “Polarity Mark” pin or Cathode

5.2 MELF Resistors

Pin 1 on Left Side

Component

Land Pattern
6 ALUMINUM ELECTROLYTIC CAPACITORS

6.1 Aluminum Electrolytic Capacitors

Note: Pin 1 is always the “Positive” pin
7 SOT COMPONENTS

7.1 SOT23-3

Pin 1 on Upper Left

Component

Land Pattern

7.2 SOT23-5

Pin 1 on Upper Left

Component

Land Pattern

7.3 SOT343

Pin 1 on Upper Left

Component

Land Pattern

7.4 SOT223

Pin 1 on Upper Left

Component

Land Pattern
8 TO COMPONENTS

8.1 TO252 (DPAK)

Component

Pin 1 on Upper Left

Land Pattern
9 SMALL OUTLINE GULLWING COMPONENT

9.1 SOIC, SOP & SSOP

Component

Land Pattern

Pin 1 on Upper Left

9.2 TSSOP

Component

Land Pattern

Pin 1 on Upper Left
10 SMALL OUTLINE J-LEAD COMPONENTS

10.1 SOIC J-Lead

Component

Pin 1 on Upper Left

Land Pattern
11 QUAD FLAT PACKAGE

11.1 Square QFP Pin 1 on Side

11.2 Rectangle QFP Pin 1 on Side
12 BUMPER QUAD FLAT PACKAGE

12.1 Bump QFP Pin 1 on Side

Component

Pin 1 on Upper Left

Land Pattern

12.2 Bump QFP Pin 1 in Center

Component

Pin 1 on Top Center

Land Pattern
13 CERAMIC FLAT PACKAGE

13.1 Ceramic Flat Package

Component

Pin 1 on Upper Left

Land Pattern
14 CERAMIC QUAD FLAT PACKAGE

14.1 CQFP (Ceramic Quad Flat Package)

Component

Pin 1 on Upper Left

Land Pattern
15 PLASTIC LEADED CHIP CARRIERS

15.1 PLCC Square

Pin 1 on Top Center

Component

Land Pattern

15.2 PLCC Rectangular

Pin 1 on Top Center

Component

Land Pattern
16 LEADLESS CHIP CARRIERS

16.1 LCC Square

Component

Land Pattern

Pin 1 on Top Center

16.2 Chip Array

Component

Land Pattern

Pin 1 on Upper Left
17 QUAD FLAT NO-LEAD

17.1 QFN Square

Component (Bottom View)

Pin 1 on Upper Left

Land Pattern

17.2 QFN Rectangular Vertical

Component (Bottom View)

Pin 1 on Upper Left

Land Pattern

17.3 QFN Rectangular Horizontal

Component (Bottom View)

Pin 1 on Upper Left

Land Pattern
18 BALL GRID ARRAY

18.1 BGA Square

Pin A1 in Upper Left

Component (Bottom View) Land Pattern

18.2 BGA Rectangular

Pin A1 in Upper Left

Component (Bottom View) Land Pattern
19 COMPONENT ZERO ORIENTATIONS

19.1 Summary

Surface Mount Land Patterns

IPC-735* Component Family Breakdown:

- **IPC-7351** = IEC 61188-5-1, Generic requirements - land/joint considerations – General Description
- **IPC-7352** = IEC 61188-5-2, Sectional requirements - land/joint considerations – Discrete Components
- **IPC-7353** = IEC 61188-5-3, Sectional requirements - land/joint considerations – Gull-wing leads, two sides (SOP)
- **IPC-7354** = IEC 61188-5-4, Sectional requirements - land/joint considerations – J leads, two sides (SOJ)
- **IPC-7355** = IEC 61188-5-5, Sectional requirements - land/joint considerations – Gull-wing leads, four sides (QFP)
- **IPC-7356** = IEC 61188-5-6, Sectional requirements - land/joint considerations – J leads, four sides (PLCC)
- **IPC-7357** = IEC 61188-5-7, Sectional requirements - land/joint considerations – Post leads, two sides (DIP)
- **IPC-7358** = IEC 61188-5-8, Sectional requirements - land/joint considerations – Area Array Components (BGA)
- **IPC-7359** = NO IEC Document, Sectional requirements - land/joint considerations – No Lead Components (LCC)

Component Zero Orientations Pin 1 Location For CAD Library Construction

1) Chip Capacitors, Resistors and Inductors (RES, CAP and IND) – Pin 1 (Positive Pin) on Left
2) Molded Inductors (INDM), Resistors (RESM) and Tantalum Capacitors (CAPT) – Pin 1 (Positive Pin) on Left
3) Precision Wire-wound Inductors (INDP) – Pin 1 (Positive Pin) on Left
4) MELF Diodes – Pin 1 (Cathode) on Left
5) Aluminum Electrolytic Capacitors (CAPAE) – Pin 1 (Positive) on Left
6) SOT Devices (SOT23, SOT23-5, SOT223, SOT89, SOT143, etc.) – Pin 1 Upper Left
7) TO252 & TO263 (DPAK Type) Devices – Pin 1 Upper Left
8) Small Outline Gullwing ICs (SOIC, SOP, TSOP, SSOP, TSSOP) – Pin 1 Upper Left
9) Ceramic Flat Packs (CFP) – Pin 1 Upper Left
10) Small Outline J Lead ICs (SOJ) – Pin 1 Upper Left
11) Quad Flat Pack ICs (PQFP, SQFP) – Pin 1 Upper Left
12) Ceramic Quad Flat Packs (CQFP) – Pin 1 Upper Left
13) Bumper Quad Flat Pack ICs (BQFP Pin 1 Center) – Pin 1 Top Center
14) Plastic Leaded Chip Carriers (PLCC) – Pin 1 Top Center
15) Leadless Chip Carriers (LCC) – Pin 1 Top Center
16) Chip Array – Pin 1 Upper Left
17) Quad Flat No-Lead ICs (QFN) QFNS, QFNRV, QFNRH – Pin 1 Upper Left
18) Ball Grid Arrays (BGA) – Pin A1 Upper Left
20 APPENDIX A - EIA Survey for Component Orientation

Date: 04 February 2003

TO:
END USERS AND SUPPLIERS OF COMPONENT PACKAGES SUPPLIED ON TAPE

FROM:
ELECTRONIC INDUSTRIES ALLIANCE (EIA)
AUTOMATED COMPONENT HANDLING COMMITTEE (ACH)

SUBJECT:
EIA SURVEY FOR ORIENTATION OF COMPONENTS SUPPLIED ON TAPE

SPECIFICALLY:
STANDARD EIA-481-B, "8 mm through 200 mm Embossed Carrier

Taping and 8 mm & 12 mm Punched Carrier Taping of Surface Mount Components for Automatic Handling".

CAUTION: THE INDUSTRY STANDARD MAY CHANGE!
WE REQUEST YOUR COMMENTS.

20.1 Purpose
The Automated Component Handling Committee develops and maintains industry engineering standards and publications for tape, reels, magazines, trays, etc. for handling components in production. It also provides technical input to US national positions on related international standards issues and proposals. Based on a number of industry queries, the committee has decided to survey industry to determine the need for an improved standard for orientation of component packages in tape and reel.

Pending the outcome of this survey, a change proposal to the EIA-481B standard will be prepared and presented for approval during 2003. This is your opportunity to have your comments considered.

Please complete the survey attached to the e-mail as the file entitled, “Part 2” by 15 March 2003 and email the completed survey to the following address: engineering@ecaus.org

20.2 Driving factors
The following areas in EIA 481B can still cause confusion as to orientation:

Factor 1 (F1):
Ambiguity exists on how to interpret terminology such as ‘Termination #1’ and ‘SOT23-5’

Factor 2 (F2):
Inconsistency exists on how components that share a common outline are oriented in tape; for example, a ‘SOT223’ and a ‘SOT89’ are supplied in tape with orientations that do not match.

These factors result in ambiguity during the taping process for the supplier. These factors may also result in components that are supplied in orientations that are not acceptable for automating the component pick-and-place process for the end user. EIA-481B, Section 4.14 documents the current standard for determining component package orientation in tape.
20.3 Examples of Possible Conflict

Driving factor F1 is illustrated by applying the current standard to a 5 termination 'SOT23' package (Figure 1a and 1b). The examples show that the same component package may have three different orientations in tape based on different package outline names as well as non-standardized termination numbering conventions by various component manufacturers. Inconsistent orientation in tape for the same component creates an unacceptable condition for automating the component pick-and-place process.

Figure 1a: Internal Part number 'X', Approved Manufacturer 'A'

<table>
<thead>
<tr>
<th>Drawing</th>
<th>Pkg Outline Name</th>
<th>EIA-481B rule used</th>
<th>Orientation in tape</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SOT23, 5L</td>
<td>If called a 'SOT23' then apply EIA-481B, 4.14.g (Termination #1 in Quadrant 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/SOT23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOT23-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>JEDEC: MO-178</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1b: Internal Part number 'X', Approved Manufacturer 'B'

<table>
<thead>
<tr>
<th>Drawing</th>
<th>Pkg Outline Name</th>
<th>EIA-481B rule used</th>
<th>Orientation in tape</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mini5-G1 Package</td>
<td>If called a 'SOT23' then apply EIA-481B, 4.14.g (Termination #1 in Quadrant 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EIAJ: SC-74A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Driving factor F2 is illustrated by applying the current standard to a SOT223 and SOT89 package (Figure 2). The example shows that packages that share similar geometric attributes have two different orientations in tape. Pick-and-place equipment machine recognition systems identify component packages by the arrangement of terminations on the package body. Component packages with similar outlines should share the same orientation in tape to minimize possibility of confusion between the packages.
20.4 Recommendation

To address the issues described in the driving factors, the following orientation rules shall be considered as standard for multi-connection components.

1. Traditionally packaged components with leaded, bottom-only terminations (e.g. PLCC, SOIC, SOJ, and BGA) shall be packaged with the terminations facing the bottom of the carrier cavity. The following rules apply whether the terminations are facing downward or upward in the cavity.

2. Termination is the electrical or mechanical connection from the component to the board and can be described as lead, pin, bump, ball, wire-pad, connector, etc.

3. Orienting feature is the attribute on the component that identifies a unique orientation and can be described as fiducial mark, chamfered edge, dimple, notch, wider termination, etc. If the orienting feature is located in the exact center of the component, or it lies on the shorter axis of the component, then an alternate orienting feature on the component should be chosen.

4. A component is described as square if the bounding rectangle around the outer extents of the component, (including body and terminations) contains edges with equal lengths; i.e. $A = B$

5. The tape pocket quadrant designations that describe the taped orientation of components are shown Figure 3.

6. Use the rules in the sequence shown in the following flow chart (Figure 4) to determine the correct orientation of the component in the tape pocket.
7. The rules described in this standard shall supersede all prior standards established in EIA-481 EIA-800 for the following component packages: SOT23, SOT143, SOT89, SOT223, IPD.

Figure 3: Component Orientation and Tape Pocket Quadrant Designations
<table>
<thead>
<tr>
<th>Outline Name</th>
<th>Reference</th>
<th>Drawing</th>
<th>Current</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT23</td>
<td>T0236</td>
<td>![SOT23 Drawing]</td>
<td>![Current SOT23 Drawing]</td>
<td>![Recommended SOT23 Drawing]</td>
</tr>
<tr>
<td>SOT143</td>
<td>T0-253</td>
<td>![SOT143 Drawing]</td>
<td>![Current SOT143 Drawing]</td>
<td>![Recommended SOT143 Drawing]</td>
</tr>
<tr>
<td>SOT223</td>
<td>T0-261 (SC-73)</td>
<td>![SOT223 Drawing]</td>
<td>![Current SOT223 Drawing]</td>
<td>![Recommended SOT223 Drawing]</td>
</tr>
<tr>
<td>SOT89</td>
<td>T0-243</td>
<td>![SOT89 Drawing]</td>
<td>![Current SOT89 Drawing]</td>
<td>![Recommended SOT89 Drawing]</td>
</tr>
<tr>
<td>DPAK</td>
<td>T0-252 (SC-63)</td>
<td>![DPAK Drawing]</td>
<td>![Current DPAK Drawing]</td>
<td>![Recommended DPAK Drawing]</td>
</tr>
</tbody>
</table>

Figure 4: Summary of new rules applied to common component packages (1 of 2)
<table>
<thead>
<tr>
<th>Outline Name</th>
<th>Reference</th>
<th>Drawing</th>
<th>Current</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLCC28</td>
<td>MS-018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO8</td>
<td>MS-012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QFP44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Summary of new rules applied to common component packages (2 of 2)

Notice:
Copies of the current version of the EIA-481-B standard are available for purchase via the Internet from EIA’s publications distributor; Global Engineering Documents at: http://global.ihs.com by typing in EIA481 in the “Document Number” block as shown and then clicking the “Search” block.
20.5 Presentation of Results

Edward F. Mikoski, Jr.
Spring 2003 (Excerpts)

Component Manufacturer (on orientation issues)
- Our customer base has conflicting perceptions as to how the orientation standard is understood.
- Based upon its wording today, we have little leverage to request orientation consistency.
- Wholesale changes will be difficult and cost prohibitive. However, all new packages and tooling releases should follow the proposed changes.

End User (on the proposed new rules)
- This would require us to overhaul our test handlers to accommodate a 90 degree rotation of the device.
- The cost involved in a project such as this would be more than we plan to budget for the test equipment.
- To upgrade, the equipment will need a new or modified feeder system, orientation station and Pick and Place head design.
- Modifications will need to be made to the vision inspection systems allowing inspection of the part at the proposed orientation.

EMS
- Under new rules the machine operator will have to reprogram orientation of existing products.

End User (on other issues that the committee should address)
- 1. Adopting the Cartesian coordinate system for identifying quadrants.
- 2. Addressing of bare die orientation in tape.
- 3. Addressing of component orientation in matrix trays as illustrated by example methodology used in the EIA Orientation Survey.

General Comment Received
- The proposal deviates for many packages from what is currently used. We feel that inconsistencies remain even with the new standard since the "old" orientations will remain on the market. Hence, we will have more inconsistencies in the future. To overcome that we propose that there should be at least a joint JEITA - EIA standard.
21.1 Device Orientation (Catalyst)

21.2 Device Orientation (LRC China)
21.3 Device Orientation (Diodes, Incorporated)

8mm

SOT-23/323

<table>
<thead>
<tr>
<th>7.7</th>
<th>8.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.90</td>
<td>4.10</td>
</tr>
</tbody>
</table>

SOT-143

<table>
<thead>
<tr>
<th>7.7</th>
<th>8.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.90</td>
<td>4.10</td>
</tr>
</tbody>
</table>

SOD-123/323/523®

<table>
<thead>
<tr>
<th>7.7</th>
<th>8.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.90</td>
<td>4.10</td>
</tr>
</tbody>
</table>

MiniMELF/MicroMELF

QuadroMELF

<table>
<thead>
<tr>
<th>7.7</th>
<th>8.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.90</td>
<td>4.10</td>
</tr>
</tbody>
</table>

SOT-363/SOT-26

<table>
<thead>
<tr>
<th>7.7</th>
<th>8.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.90</td>
<td>4.10</td>
</tr>
</tbody>
</table>

SOT-353/SOT-25

<table>
<thead>
<tr>
<th>7.7</th>
<th>8.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.90</td>
<td>4.10</td>
</tr>
</tbody>
</table>

12mm

SOT-363/SOT-26/SC-74/SC-89-6L

<table>
<thead>
<tr>
<th>7.7</th>
<th>8.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.90</td>
<td>4.10</td>
</tr>
</tbody>
</table>

SMA

<table>
<thead>
<tr>
<th>11.7</th>
<th>12.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.90</td>
<td>4.10</td>
</tr>
</tbody>
</table>

SMB

<table>
<thead>
<tr>
<th>11.7</th>
<th>12.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.90</td>
<td>4.10</td>
</tr>
</tbody>
</table>

MELF

<table>
<thead>
<tr>
<th>11.7</th>
<th>12.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.90</td>
<td>4.10</td>
</tr>
</tbody>
</table>

MiniDIP

<table>
<thead>
<tr>
<th>11.7</th>
<th>12.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.90</td>
<td>4.10</td>
</tr>
</tbody>
</table>

Symmetrical product (No pin 1 indicator).

SOD-523 has alternating empty cavities as indicated below.

Direction of unreeling

30
21.4 Device Orientation (Fairchild Semiconductor)

Packaging Description:
SC70-6 packs are shipped in tape. The carrier tape is made from a polyimide (copper clad) polyester film. The cover tape is a non-adhesive polyimide. The adhesive is a frosted polyimide-based adhesive. The tabs are cut into each reel, and a grid of polyimide carrier tape is placed inside. The tape is supplied in 1,000 units per 11" or 17" diameter reel. The reels are placed into a plastic box illustrated in Figure 1.8. Each box is made of heavy gauge corrugated board paper with a red ink label. Each reel box contains five reels maximum. An intermediate plastic container for 13" option is available. The number of dies/chips is printed.

<table>
<thead>
<tr>
<th>SC70-6 Packaging Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging Option</td>
</tr>
<tr>
<td>Color Red Tape/Blue</td>
</tr>
<tr>
<td>Color</td>
</tr>
<tr>
<td>Reel Size</td>
</tr>
<tr>
<td>Box Dimension (mm)</td>
</tr>
<tr>
<td>Max qty per box</td>
</tr>
<tr>
<td>Weight per unit (g)</td>
</tr>
<tr>
<td>Weight per reel (kg)</td>
</tr>
</tbody>
</table>

Barcode Label

355mm x 335mm x 40mm intermediate container for 13" reel option

21.5 Device Orientation (Linear Technology)
S5
TSOT, SOT-23 Devices

SC6, S6 and TS8
SC70, TSOT, SOT-23 Devices

S4
SOT-143 Devices
21.6 Device Orientation (RF Technologies)

SOIC-8 (SO-8)

SSOP-8

MSOP8

SSOP24

SOIC-14 (SO-14)

SSOP28
Component Orientations

SOIC 16 (SO-16)

SSOP20

SOIC 24 (SO-24)

SOT25

SOT26

SOIC 16 Wide Body (SOW-16)

SM2

TSSOP16

User Direction of Feed

User Direction of Feed
21.7 Device Orientation (Microchip Devices)
FIGURE 10: 3L/5L/7L DDPAK AND 3L DPAK DEVICES

FIGURE 11: SOT-89 DEVICES

FIGURE 12: DFN/QFN DEVICES
DIMENSIONS AND TOLERANCES

All component taping diagrams, dimensions, tolerances, and component positioning requirements are those which are specified per EIA Standard EIA-481, current revision.

For the 8-lead SOIC EIAJ Type II Package and 16 mm Carrier Tape width, the component taping diagrams, dimensions, and tolerances, and component positioning requirements are those which are specified per EIAJ Standard RC-1009B, current revision.
21.8 Device Orientation (ZETEX)

COMPONENT ORIENTATION

In all cases the device mounting side is orientated to the bottom side of the component compartment. This being the tape side which cannot be seen during unreeing.

<table>
<thead>
<tr>
<th>Package</th>
<th>Orientation Diagrams</th>
<th>Tape Width (mm)</th>
<th>Reel Size Supplied</th>
<th>No. Of Components</th>
<th>Tape Option Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO T223</td>
<td></td>
<td>12 12</td>
<td>7" (180 mm) 13"(330mm)</td>
<td>1,000 4,000</td>
<td>TA TC</td>
</tr>
<tr>
<td>SO T99</td>
<td></td>
<td>12 12</td>
<td>7" (180 mm)</td>
<td>1,000</td>
<td>TA</td>
</tr>
<tr>
<td>SO T23</td>
<td></td>
<td>8 9</td>
<td>7" (180 mm) 13"(330mm)</td>
<td>3,000 16,000</td>
<td>TA TC</td>
</tr>
<tr>
<td>SMS</td>
<td></td>
<td>12 12</td>
<td>7" (180 mm) 13"(330mm)</td>
<td>1,000 4,000</td>
<td>TA TC</td>
</tr>
<tr>
<td>SO1</td>
<td></td>
<td>12 12</td>
<td>7" (180 mm) 13"(330mm)</td>
<td>500 2500</td>
<td>TA TC</td>
</tr>
<tr>
<td>SO10</td>
<td></td>
<td>18 18</td>
<td>7" (160 mm) 13"(330mm)</td>
<td>500 2500</td>
<td>TA TC</td>
</tr>
</tbody>
</table>
21.9 Device Orientation (IDT)

Tape and Reel

General Information

The Tape and Reel packaging materials shall not adversely affect the visual, mechanical, and electrical characteristics or markings of the components. In all cases, the components must be protected from bent leads, lead contamination, ESD damage, and any matter that may interfere with the soldering or normal use of the product. All Tape and Reel materials were formulated to provide dimensions and tolerances necessary to tape surface mount components such that they may be automatically handled. Tape and Reel materials meet EIA-481-B requirements for embossed carrier taping of surface mount components for automatic handling, including IDT’s standard aging and drop tests.
The purpose of this form is to provide the Technical Committees of IPC and the IEC with input from the industry regarding usage of the subject of Zero Component Orientation Recommendations.

Individuals or companies are invited to submit comments to IPC. All comments will be collected and dispersed to the appropriate committee(s).

If you can provide input, please complete this form and return to:

IPC-Association Connecting Electronics Industries
3000 Lakside Drive
Suite 309S
Bannockburn, IL, 60015
Tel: 847-615-7100 Fax: 847-615-7105
Web: www.ipc.org
Email: answers@ipc.org

1. I recommend changes to the following:

 Requirement __
 Paragraph number ___
 Other__

2. Recommendations for correction: ___

3. Other suggestions for document improvement:

Submitted by:

Name ____________________________ Telephone_____________________
Company ____________________________ E-mail ________________
Address __
City/State/Zipcode ___
Date: ____________________________
23 CREDITS

23.1 Contributions

Component pictures provided by Topline Components ©1997, TopArt Clip Art

Companies that provided written and graphic materials contained within this document:

Diodes Incorporated
Diodes Incorporated
3050 E. Hillcrest Drive
Westlake Village, CA 91362-3154
Tel: 805-446-4800
Fax: 805-446-4850
Web: http://www.diodes.com

Electronic Industries Alliance
Edward F. Mikoski, Jr.
2500 Wilson Blvd.
Arlington, VA 22201
Tel: 703-907-7500
Web: http://www.eia.org

IDT
2975 Stender Way
Santa Clara, CA 95054
Tel: 408-727-6116
Fax: 408-492-8674
Web: http://www.idt.com

IPC – Association Connecting Electronics Industries
Dieter Bergman
3000 Lakside Drive
Suite 309S
Bannockburn, IL, 60015
Tel: 847-615-7100 Fax: 847-615-7105
Email: DieterBergman@ipc.org
Web: http://www.ipc.org

PCB Libraries, Inc.
Tom Hausherr
701 Lee Street
Des Plaines, IL 60016
Tel: 877-722-4441
Fax: 847.745.0450
Email: Tom@PCBLibraries.com
Web: http://www.PCBLibraries.com

Zetex Semiconductors
Web: http://www.zetex.com

Linear Technology Corporation
1630 McCarthy Blvd
Milpitas, CA 95035 USA
Phone: 408-432-1900
Fax: +1-408-434-0507
web: www.linear-tech.com