Designing Clean Analog PLL Power Supply in a Mixed-Signal Environment

Introduction

Most system-level designs involve a mix of both analog and digital circuit components. In some systems, a single integrated circuit may consist of both. For instance, Actel’s Axcelerator family of FPGA devices contains analog clock-conditioning circuits such as Phase Locked Loops (PLLs) in addition to the digital circuits. In general, analog components operate in the transistor’s active region and are very sensitive to disturbances in its supply voltage. Thus, a low noise analog power-supply network is a stringent requirement for the proper operation of these components. Noise due to variations in the power supply voltage can be coupled into the analog portion of the chip and may become amplified along with the desired signal. This can result in processing errors and affect the functionality of the system. This application note discusses some of the issues related to noise contamination of the analog components in a mixed signal environment and provides useful suggestions for designing a clean analog supply to minimize its effects. All suggestions in this document are applicable to both Flash and Axcelerator devices with the exception of “Technique 1: Use of Power Supply Filters”. The application for Axcelerator and Flash devices in “Technique 1: Use of Power Supply Filters” are slightly different and are described below.

Sources of Power-Supply Noise

Digital CMOS circuits consume dynamic switching power. The dynamic current drawn from the power supply leads to frequency-dependent IR (voltage) drops in the V_{DD} and V_{SS} traces of the printed circuit board (PCB). This phenomenon is called ground bounce on the V_{SS} side. The ground bounce is related to the parasitic inductance of the package pins of the integrated circuit (IC), device ground, and system ground. The dynamic current can transform into noise by contributing an amount of voltage equal to

\[V = \frac{dI}{dt} \]

EQ 1

between the system ground and device ground (Figure 1 on page 2).

Since various components may share the V_{DD} and V_{SS} planes or busses as a source of power, any large voltage fluctuations on the PCB may violate the voltage noise rating of these components. Such noise, if not reduced, can produce logical errors and other undesirable effects. The problem is more pronounced if the noise is coupled to the analog portion of a mixed-signal integrated circuit as it can lead to jitter, distortion, and reduced performance of the analog components. It is important to properly separate the digital and analog powers supplies to minimize the noise levels as much as possible in a mixed-signal environment.

Techniques to Reduce Analog Power-Supply Noise

Technique 1: Use of Power Supply Filters

For Flash devices, a noise filter between the power supply and the device power pins, as shown in Figure 2 on page 2, can be used to filter out low and/or high frequency differential noise between AVCC and ground that might couple into the device from the digital power pin. This can be implemented by using an inductor, L_1, and a large polarized capacitor C_3 in parallel with a set of two small ceramic high-frequency capacitors C_1 and C_2. The impedance of inductor L_1 is selected to be much greater than that of the analog component in order to isolate the analog domain from the digital domain at low, medium and high frequencies. This is because L_1 will be seen as an open circuit at these frequencies. The two small ceramic capacitors need to be placed near the device power pins (less than one inch from PLL power and ground pins). The purpose of the smaller capacitors is to filter the high frequency switching noise, while the purpose of the larger capacitor is to filter out low frequency supply ripple noise. This technique can be
combined with “Technique 3: Use Wide Traces for Analog Power” on page 3. Please refer to “Appendix” on page 6 for a sample implementation of such a filter.

The analog power supply for Axcelerator devices uses a “floating ground” approach to eliminate noise. Therefore the suggested filter in this section is implemented differently. Please refer to figure 2-3 on page 20 of the Axcelerator data sheet for the recommended implementation.

Figure 1 • Sources of Parasitic Inductance Causing Ground Bounce

Sample Filter

Figure 2 • Sample Filter
Contents of the Filter

![Figure 3](image)

Figure 3 • *Power Supply Filter and Possible Implementation*

Technique 2: Separation of Digital and Analog Supplies with Regulators

Separate supply outputs should be implemented to supply power to the digital and analog power pins of the device. One can benefit from the inherent higher noise rejection characteristics of the voltage regulators, but it should be verified whether the selected regulators do provide sufficient rejection. Additionally, the insertion of voltage regulators before the filter can provide isolation of power between the analog and digital supplies ([Figure 2 on page 2](#)). This minimizes the switching noise produced by the digital electronics from interfering with the analog components.

![Figure 4](image)

Figure 4 • *Separation of AVCC and DVCC by Means of Power Regulators*

Technique 3: Use Wide Traces for Analog Power

The use of separate planes on the PCB should be implemented for DVCC, DGND, AVCC, and AGND. For the optimum solution, the AGND and the DGND planes should be connected together at the power supply source. This ensures that both planes are at the same potential, while the transfer of noise from the digital to the analog domain is minimized.

This power and ground planes approach allows the use of vias to directly connect the component pins to the GND or VCC planes instead of using traces. As traces become longer, parasitic capacitance, inductance, and coupling noise between neighboring traces increase.

Adding extra layers on the PCB may not always be possible due to cost and other design constraints. For example if the number of analog components is small compared to digital components, it may not be reasonable to dedicate an entire power and ground plane just for the analog components. Instead, a wide trace can be implemented on a signal plane to serve as the analog supply for the analog parts ([Figure 5 on page 4](#)). This trace is made many times wider than regular signal traces to minimize the amount of...
Designing Clean Analog PLL Power Supply in a Mixed-Signal Environment

resistance and to have it large enough to be considered a "plane." The same concept can be applied to the analog ground. Another wide trace or island of conducting material positioned close to the analog device in another signal layer can provide the ground "plane." The AGND "plane" should be connected to DGND at the power source to minimize noise transfer. This approach still allows the use of vias to connect surface-mounted components to the supply and ground.

Technique 4: Shorten the Current Loops as Much as Possible

In high-speed circuits, the path of the signal current going to ground is always along the path of least inductance. The low inductance path is located directly under the signal's conductor (the PCB trace). Large current loops can increase the signal rise time due to increased parasitic capacitance and contribute to crosstalk or coupling between two conductors.

Adding bypass or decoupling capacitors can shorten the return path from analog and digital VCC to ground and therefore reduce the noise associated with I/O switching. Capacitors with low intrinsic inductance and resistance should be chosen. Place them as close as possible to each of the analog and digital VCC pins to minimize path inductance between the pin and the capacitor. These bypass capacitors provide local energy storage and supply the dynamic current required by the switching circuits. Bypass capacitors must be large enough to supply the required current for a few nanoseconds (ns).

The amount of current the capacitor needs to source depends on the load that the device output is driving and the voltage dips that can be tolerated. EQ2 shows how to calculate the capacitance required for a device operating at an I/O voltage of 3.3V with 12 outputs. Each output is driving a 70Ω load that is assumed to be much greater than the output resistance of the driver.

Total current needed to source is

\[12 \times \frac{3.3V}{70\Omega} = 566mA \]

EQ 2

Assume that, as a requirement of the design, the voltage on the VCC bus cannot drop more than 50 mV, and the capacitor is needed to source this current for 2 ns.

Define current across a capacitor

\[I_C = \frac{dV}{dT} \]

EQ 3
Where

\[IC = \text{Value of current being sourced by the capacitor (Amperes)} \]
\[dT = \text{Amount of time the current is sourced for (seconds)} \]
\[dV = \text{Maximum allowable voltage drop (Volts)} \]
\[C = \text{Capacitance needed (Farads)} \]

Solving for Capacitance

\[C = IC \frac{dT}{dV} \]

EQ 4

Substituting the required values into the equation

\[C = (566 \times 10^{-3} \text{s}) \times \frac{2 \times 10^{-9} \text{s}}{50 \times 10^{-3} \text{V}} = 22.64 \mu\text{F} = 0.023 \mu\text{F} \]

EQ 5

Actel also recommends using a mix of decoupling capacitors of different sizes to provide good decoupling across a wide frequency range. For example 0.1 µF, 0.01 µF, 1000 pF and 100 pF ceramic capacitors can be scattered throughout to maximize the filtering effects.

Conclusion

Digital systems will continue to run at faster and faster clock speeds and pose a challenge to the system-board designers. Extreme care must be taken in board layouts and filtering circuits to ensure that digital logic do not couple switching noise into the analog domain. The guidelines described in this document outline some of the areas that board designers need to be aware of in designing a more robust and reliable system, incorporating both analog and digital circuits.

List of Changes

<table>
<thead>
<tr>
<th>Previous version</th>
<th>Changes in current version 51900071-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>51900071-0*</td>
<td>"Technique 1: Use of Power Supply Filters" was updated to highlight the differences between Flash and Axcelerator</td>
</tr>
</tbody>
</table>

Note: This is the part number located on the last page of the document.
Appendix

The sample scheme presented here uses a 6.8 µH inductor, 10 µF generic electrolytic capacitor, 10 nF and 0.1 µF ceramic high-frequency capacitors to decouple the switching noise. No ground filter is required, since the described LC filter ensures that the voltage difference V(diff) between V(Analog) and V(GND) is constant at any frequency, therefore acting as a filter for both power and ground. In this example, up to three PLLs can be connected to the filtered analog supply as long as the distance of high frequency capacitors can be kept below one inch from each analog supply and ground pin of the device.

Example of Capacitor and Inductor Selection

Selection for 100 nF Capacitor
Producer BC components, Type X7R, 100 nF, 16V
BC components part number: 0603B104K160BT
Digikey Part number (quantity <10): BC1254CT-ND
Digikey Part number (quantity >10): BC1254TR-ND

Selection for 10 nF Capacitor
Surface mount ceramic capacitor
Producer BC components, Type X7R, 10 nF, 50V
BC components part number: 0603B103K500BT
Digikey Part number (quantity <10): BC1252CT-ND
Digikey Part number (quantity >10): BC1252TR-ND

Selection for 6.8 µH Inductor
Unshielded surface mount inductor
Producer Delevan, Q=7.9 at 30 MHz, maximum current
Delevan components part number: 1210-682J
Digikey Part number (quantity <500): DN10682JCT-ND
Digikey Part number (quantity >500): DN10682JTR-ND